User Tools

Site Tools


curriculum

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
curriculum [2025/10/28 13:51] – [Period 2] director-traicurriculum [2025/10/28 15:32] (current) – [Period 2] director-trai
Line 3: Line 3:
 ===== First year (M1) ===== ===== First year (M1) =====
  
-Mandatory: +  * **Mandatory:** //Refresher in statistics// (APM_51438_EP): Marine Le Morvan, Inria 
-  * Refresher in statistics (APM_51438_EP): Marine Le Morvan, Inria+  * **Optional:** //Refresher in computer science// (CSC_51440_EP): Amal Dev Parakkat, Télécom Paris
  
-Optional: 
-  * Refresher in computer science (CSC_51440_EP): Amal Dev Parakkat, Télécom Paris 
- 
- 
-All subsequent M1 courses are 36h and will credit 4.5 ECTS. Note that students need to mandatorily either choose a Deep Learning course either in Period 1 (CSC_51054_EP) or in Period 2 (APM_52183_EP). 
  
 +All subsequent M1 courses are 36h and will credit 4.5 ECTS.
  
 ==== Period 1 ==== ==== Period 1 ====
  
-Mandatory: +  * **Mandatory:** //Machine Learning// (MDC_51006_EP): Erwan Le Pennec and Jesse Reed, École polytechnique 
-  * Machine Learning (MDC_51006_EP): Erwan Le Pennec and Jesse Reed, École polytechnique +  * **Elective** (at least 1 course)
- +    :?: //Deep Learning// (CSC_51054_EP): Michalis Vazirgiannis and Johannes Lutzeyer, École polytechnique 
-At least 1 course among+    //Emerging subjects in machine learning and collaborative learning// (APM_51178_EP, research-oriented): Aymeric Dieleveut and El Mahdi El Mhamdi, École polytechnique 
-  * Deep Learning (CSC_51054_EP): Michalis Vazirgiannis and Johannes Lutzeyer, École polytechnique +    //Signal processing from Fourier to ML// (APM_51055_EP): Rémi Flamary, École polytechnique 
-  * Emerging subjects in machine learning and collaborative learning (APM_51178_EP, research-oriented): Aymeric Dieleveut and El Mahdi El Mhamdi, École polytechnique +  * **Optional:** 
-  * Signal processing from Fourier to ML (APM_51055_EP): Rémi Flamary, École polytechnique +    :!: //Statistical learning theory// (APM_51059_EP): Karim Lounici, École polytechnique 
- +    :!: //Probability theory for ML - Applications to Monte Carlo methods and generative models// (APM_51056_EP): Alain Durmus, École polytechnique 
-Optional: +    //Image analysis and computer vision// (CSC_51073_EP): Mathieu Brédif, Université Gustave Eiffel 
-  * Statistical learning theory (APM_51059_EP :!:): Karim Lounici, École polytechnique +    :!: //Topological data analysis// (CSC_51056_EP): Steve Oudot, INRIA 
-  * Probability theory for ML - Applications to Monte Carlo methods and generative models (APM_51056_EP :!:): Alain Durmus, École polytechnique +  * Mandatory non-scientific courses: 
-  * Image analysis and computer vision (CSC_51073_EP): Mathieu Brédif, Université Gustave Eiffel +    * //Introduction to Marketing and Strategy// (IME_51456_EP): Philippe Ginier-Gillet, École polytechnique 
-  * Topological data analysis (CSC_51056_EP :!:): Steve Oudot, INRIA+    * //Sport, Humanities, Foreign Language// (these courses are similar to those every graduate from École polytechnique must follow)
  
 +:?: Students must take one deep learning course that they can choose between period 1 (CSC_51054_EP) or period 2 (APM_52183_EP)\\
 :!: Strong mathematical background recommended :!: Strong mathematical background recommended
  
- 
-Mandatory non-scientific courses: 
-  * Introduction to Marketing and Strategy (IME_51456_EP): Philippe Ginier-Gillet, École polytechnique 
-  * Sport 
-  * Humanity 
-  * Foreign Language 
  
  
 ==== Period 2 ==== ==== Period 2 ====
  
-Mandatory: +  * **Mandatory** 
-  * Reinforcement learning and autonomous agents (CSC_52081_EP): Jesse Read, École polytechnique +    * //Deep Learning// (APM_52183_EP :?:): Kevin Scaman, INRIA 
-  * Deep Learning (APM_52183_EP): Kevin ScamanINRIA+    //Reinforcement learning and autonomous agents// (CSC_52081_EP): Jesse Read, École polytechnique 
 +  * **Elective** (1 course): 
 +    * //Optimization for AI// (APM_52067_EP): Luiz Chamon and Aymeric DieuleveutÉcole polytechnique 
 +    * //Optimization and responsible AI for sustainability// (CSC_52073_EP): Sonia Vanier, École polytechnique 
 +  * **Optional** 
 +    * //Statistics in action// (APM_52066_EP): Zacharie Naulet, INRAE 
 +    * //Advanced deep learning// (CSC_52087_EP): Vicky Kalogeiton, Johannes Lutzeyer, Ye Zhu, and Xi Wang, École polytechnique 
 +    * //Introduction to text mining and NLP// (CSC_52082_EP): Davide Buscaldi, Michalis Vazirgiannis 
 +    * //Multimodal generative AI// (CSC_52002_EP): Vicky Kalogeiton 
 +    * //Graph machine and deep learning for generative AI// (CSC_52072_EP): Johannes Lutzeyer and Michalis Vazirgiannis, École polytechnique 
 +  * **Mandatory non-scientific courses:** 
 +    *  //Entrepreneurship for sustainability// (IME_52068_EP, Chloé Steux) **OR** //Case studies on innovation// (IME_52062_EP, Philippe Ginier-Gillet) 
 +    * //Sport, Humanities, Foreign Language// (these courses are similar to those every graduate from École polytechnique must follow)
  
-1 optimization course: +:?Students must take one deep learning course that they can choose between period 1 (CSC_51054_EP) or period 2 (APM_52183_EP).
-  * Optimization for AI (APM_52067_EP)Luiz Chamon and Aymeric Dieuleveut, École polytechnique +
-  * Optimization and responsible AI for sustainability (CSC_52073_EP): Sonia Vanier, École polytechnique +
- +
-course among: +
-  * Statistics in action (APM_52066_EP): Zacharie Naulet, INRAE +
-  * Advanced Deep Learning (CSC_52087_EP): Vicky Kalogeiton, Johannes Lutzeyer, Ye Zhu, and Xi Wang, École polytechnique +
-  * Introduction to Text Mining and NLP (CSC_52082_EP): Davide Buscaldi, Michalis Vazirgiannis +
-  * Multimodal Generative AI (CSC_52002_EP): Vicky Kalogeiton +
-  * Graph Machine and Deep Learning for Generative AI (CSC_52072_EP): Johannes Lutzeyer and Michalis Vazirgiannis, École polytechnique +
- +
-+ Mandatory non-scientific courses: +
-  *  Entrepreneurship for sustainability (IME_52068_EP, Chloé Steux**or** Case studies on innovation (IME_52062_EP, Philippe Ginier-Gillet) +
-  *  Sport  +
-  *  Humanities +
-  *  Foreign Language+
  
 ==== Period 3 ==== ==== Period 3 ====
  
-INT_52406_EP - Research-Oriented Internship (4 to 6 months, 20 ECTS) +Research-oriented internship (4 to 6 months) (INT_52406_EP, 20 ECTS)
  
 \\ \\ \\ \\ \\ \\
Line 72: Line 59:
 ===== Second year (M2) ===== ===== Second year (M2) =====
  
-No refresher course is provided but students directly entering in the M2 and lacking background in Computer Graphics are welcome to follow the M1 refresher course in Computer Science. +No refresher courses are provided in the M2. All M2 courses are 24h and will credit 2 ECTS.
  
 ==== Period 1 ==== ==== Period 1 ====
  
-   +  * //Deep reinforcement learning and multi-agent systems// (CSC_53439_EP): Jesse Read, École polytechnique 
 +  * //Large language models// (CSC_53432_EP): Guokan Shang, MBZUAI 
 +  * //Privacy and uncertainty quantification// (APM_XXXX_EP): Paul Mangold, École polytechnique 
 +  * //Uncertainty quantification and Bayesian inference// (CSC_XXXX_EP) 
 +  * //Constrained (reinforcement) learning// (APM_XXXX_EP): Luiz F. O. Chamon, École polytechnique 
 +  * //Explainable AI// (APM_XXXX_EP)
 ==== Period 2 ==== ==== Period 2 ====
  
 +  * //Introduction to the verification of neural networks// (CSC_54441_EP): Eric Goubault and Sylvie Putot, École polytechnique
 +  * //Operational research intersects ML for explainability, sustainability, and frugality// (CSC_XXXX_EP): Sonia Vanier, École polytechnique
 +  * //Fundamentals of security and robustness for AI// (APM_XXXX_EP): El Mahdi El Mhamdi, École polytechnique
 +  * //Bias and fairness// (APM_XXXX_EP): Solenne Gaucher, École polytechnique
 +  * //Explainability, security, privacy of LLMs// (CSC_XXXX_EP): Davide Buscaldi, Université Sorbonne Paris Nord
 +  * //Fighting disinformation and detecting fake news// (CSC_XXXX_EP): Ioana Manolescu, INRIA
  
 +==== Transverse courses and projects ====
 +**(these courses span periods 1 and 2)**
  
-   +  * //Transverse project// (MDC_54430_EP, 8 ECTS): Students will work half a day per week on a project corresponding to a challenging question raised either by an industrial partner or by a researcher in the domain spanned by the program
-==== Transverse Courses and Projects (spanning Period 1 and 2) ==== +  //Seminar on ethical issues, law and novel applications of AI// (IME_50430_EP, 6 ECTS)Véronique Steyer, École polytechnique 
- +  * **Mandatory non-scientific courses:** //SportHumanities, Foreign Language// (these courses are similar to those every graduate from École polytechnique must follow)
-**MDC_54430_EP - Transverse project (8 ECTS):** Students will work half a day week on a transverse projectcorresponding to a challenging question either raised by an industrial partner or by a researcher in the domain spanned by the programme.  +
- +
-**IME_50430_EP - Seminar on ethical issues, law and novel applications of AI (6 ECTS)Véronique Steyer <veronique.steyer@polytechnique.edu>**  +
-Students will be sensitized to ethical issues and law, and introduced to novel applications of artificial intelligence and visual computing through a weekly seminar with key-note talks from both institutional and industrial partners.  +
-    +
-**Courses in humanitieslanguages and sports (8 ECTS total)** These courses will be similar to those of the other graduate degrees at Ecole Polytechnique. +
- +
  
  
 ==== Period 3 ==== ==== Period 3 ====
  
-INT_54490_EP - Internship either in the R&D department of a company or in a research lab  (5 to 6 months, 24 ECTS)+  * Internship in an industrial or academic research lab (5 to 6 months) (INT_54490_EP, 24 ECTS)
  
  
curriculum.1761659501.txt.gz · Last modified: 2025/10/28 13:51 by director-trai

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki